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A finite element scheme based on a least squares variational principle is used to calculate 
the transonic flow field around harmonically oscillating airfoils. The most important features 
of this procedure are its insensitivity to equation type and the absence of frequency limitation. 
Sample numerical results are reported including transonic flows containing shocks. 

I. INTRODUCTION 

The study of aerodynamic forces on oscillating airfoils has received a large amount 
of attention in recent years [ l-51. The reason for this is that the phenomenon of 
flutter can create highly undesirable aeroelastic instabilities that become particuIariy 
acute when the flow speed is near the speed of sound. 

In the transonic regime the equations of motion are of the mixed type, i.e., elliptic 
in the subsonic region and hyperbolic in the supersonic region. This is one of the 
major complications that confront numerical models. Another difficulty occurs when 
the frequency is not small. In this case the far field subsonic equations are indefinite, 
resembling the Helmholtz rather than the Laplace equation. 

In Section II the equations of motion are derived. Perhaps the most interesting part 
of this section is the derivation of an accurate far field radiation condition for this 
class of problems. 

In Section III the numerical scheme for approximating the flow field is described. 
It is a finite element procedure based on a weighted least squares variational prin- 
ciple. This scheme has the dual advantage of being insensitive to equation type as 
well as producing Hermitian positive definite algebraic systems at all frequencies. 
Representative numerical results are given in Section IV. 

Research was supported in part by NGT-39-087-800 for the first author, by the AR0 Contract 
No. DAAG-29-80-C-0081 and by the Office of Naval Research Contract No. NOOOl4-UK-0306 for the 
second author, and by the Air Force Office of Scientific Research Grant No. AF-AFOSR-80-0083 for 
the third author. Additional support was provided under NASA Contracts No. NASI-16394 and 
No. NASI-15810 while the authors were in residence at the Institute for Computer Applications in 
Science and Engineering, NASA, Langley Research Center, Hampton. VA 23665. 

387 
~21-9991/83 $3.00 

Copyright D 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



388 COX,FIX,AND GUNZBURGER 

II. GOVERNING EQUATIONS 

We begin by giving a brief derivation of the governing equations whose approx- 
imate solution we will discuss in subsequent sections. The derivation described herein 
follows that found in (41 and [6] except for the treatment of the radiation boundary 
condition. The starting point is the equations of plane, unsteady, inviscid, isentropic, 
and irrotational flow. Such a flow admits a velocity potential 0 related to the 
velocity v by 

v=V@. 

It can be shown that the potential function @ satisfies the “full potential equation” 

where the speed of sound a is related to the potential function @ by 

a*=af, -(Y-1)l~T+4(~~+~:-U~>J. (2.2) 

In (2.1) and (2.2), (X, Y) are the physical space variables, T the physical time 
variable, y the constant ratio of specific heats, and a, and U, are, respectively, the 
speed of sound and speed of the free stream flow. 

We assume that the free stream flow is a uniform flow in the X direction with 
speed U,. We further assume that the airfoil geometry is such that the flow field may 
be viewed as a small perturbation of the uniform free stream. This is the “small 
disturbance” assumption and essentially requires that the airfoil thickness, camber, 
and angle of attack be small, In view of the small disturbance assumption, the full 
potential function @ may be expressed as 

@(X, Y, T) = U, (X + 6(X, Y, T) 1, (2.3) 

where 6 is the perturbation velocity potential. The small disturbance assumption 
implies that IV&/U,] < 1. We now substitute (2.3) into (2.1) and (2.2) and first 
neglect all terms which are quadratic in & in the coefficients of each second 
derivative term in (2.1). The result is 

I (1 --M’)-$y- 1)6,.4P(y+ I,m,J 6i,,-2M?d5;,i5:,, 
so 

where M = U, /a, is the Mach number of the free stream flow. Again invoking the 
small disturbance assumption, we neglect all remaining terms which are quadratic in 
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~8 except those appearing in the coefficient of &XX. There we cannot neglect 6, and 
8, since, for transonic flows, (1 - M2) will in general be small. The result is the 
unsteady, transonic small disturbance equation 

L 

(l-M2)-~(y-l)m,-M2(:tl)~,J~.~~+~,., -$ 

a rK 

& - g d& = 0. 

x 
(2.4) 

For flows which are not transonic we may further simplify (2.4) by neglecting the 
remaining quadratic terms to obtain the convected wave equation 

(1 --M’)6,+&-$f &, -$ ci& = 0. (2.5) 
a. cc 

We now scale the variables in (2.4) using the chord c as a length scale and the 
ratio c/U, as a time scale. Specifically, we let 

x = x/c, y= Y/c, t = U,=, T/c, and 5 = qc. 

so that x,Y; t, and 3 are all nondimensional. Substituting these into (2.4) yields that 

[ (1 --M*) - M*(y- l)s, - M2(y + 1) &,] &,, + C& - 2M2&,, - M2& = 0. (2.6) 

We introduce the further scalings 

y=iuY and 6 = S/E, 

where E will measure the size of the perturbation, e.g., for a two-dimensional 
symmetric airfoil, E = (6/1I4)~‘~, where 6 is the thickness-to-chzrd ratio& We set 
,u2 = M’s in order to equilibrate the size of the coefficient of the Qi,, and QYY terms. 
The result is that 

(1 -ALP) 
M’E 

-(y-l)&++ l)F, CE,,+t,, 
I 

- f (2Gx, + $,,) = 0. (2.7) 

We now introduce a second level of “linearization” by assuming that the unsteady 
flow is a small perturbation of a steady flow, i.e., that we may express the small 
disturbance potential function @ as 

6(x, y, t) = W(x, y) + wx, y. t), 

where @” and its gradient are small compared to those of @“. Substituting into (2.7) 
we note that, by neglecting all terms which involve @“, the steady small disturbance 
potential function @” satisfies the equaticn 

(2.8) 
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i.e., the steady transonic small disturbance equation. Throughout this work we will 
assume that a solution @“(xl y) of (2.8) and the appropriate boundary condition 
discussed below is available to us. See, e.g., [5] and 17 1 for discussions of the approx- 
imate solution of (2.8). 

To obtain the governing equation for (P”, we neglect all terms in (2.7) which are 
quadratic in @“. We also neglect the term 

which is small except for oscillations with frequencies much larger than those which 
are most physically interesting [S]. Then, using (2.8), we arrive at the following 
linear equation for Q3’. 

IK-(y+])8:j~:,-!(i’+l)~:j~:,+~:,-~(2~U,,+~~,)=O, (2.9) 

where 

K = (1 - M*)/(M*s). 

Below, we will assume that the boundary condition for @“(x,y, f) is periodic in 
time with frequency cc). Here we assume that the solution @J’ is likewise periodic in 
time with period w, i.e., 

@‘(x, Y, t) = 0(x, Y) exp(iot). 

Substituting into (2.9) yields the linear, time independent equation for 4 

(2.10) 

This is the equation whose approximate solution we will seek in subsequent sections. 
We note that (2.10) is not written in conservative form. However, in conjuncLion with 
our least squares procedure described below, numerical experiments have shown that 
it makes no difference whether or not (2.10) is written in conservative form. 

We now turn to the boundary conditions which the potential function must satisfy. 
First, the flow must be tangential to the airfoil surface. If this surface is described by 

F(X, Y, T) = 0, 

then the tangency condition requires that 

F,fV@.VF=O on F(X, Y, T) = 0. 

In terms of 6, this condition yields that 

(2.1 1) 
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The small disturbance assumption implies that if we express F in the form 

F= Y-f(X,T)=O, (2.12) 

then F(X, ;r> is small. Substituting into (2.11) and neglecting products of (ii; and p 
yields that 

Fr+ u,&u,&,=o on Y = F(X, T), (2.13) 

which is the boundary condition which 6 must satisfy. Now, since P is small. we 
have that 

4$,(X, F, T) = &.y(x, 0, T) -t F(X, T) 8,, + - *a* 

Again, neglecting products of 6 and F’ then implies that we may replace (2.13) by 

F”,+ u,&u,&.=o for Y=O and O<X<c, (2.14) 

where c is again the chord. The boundary condition (2.14) thus embodies the mean 
surface approximation which enables us to impose our boundary condition on a 
portion of the plane Y = 0 instead of on the ailfoil itself. 

In terms of the scaled variables x,p, t, and #, (2.14) is transformed to 

b, + ;“, - q = 0 for y=O and O<x<l, (2.15) 

where ?= F/&PC. We now assume that 3 may be expressed as 

F(x, t) = P(x) + Fyx, t) = P(x) +f(x) e’“‘, 

where we assume that the unsteady part is small compared to the steady part and that 
the unsteady part is periodic in time with frequency o. Then (2.15) yields that 

qx, y = 0) = zqx) for O<x<l. (2.16) 

and 

~,(x,y=O)=f,+iof for O<x< 1. (2.17) 

Equations (2.16) and (2.17) are the boundary conditions due to the airfoil which the 
solution of (2.8) and (2.10), respectively, must satisfy. 

In addition to the boundary condition at the airfoil, the potential function must 
satisfy additional conditions. First, there are wake conditions which call for free 
vortices shed from the trailing edge to follow the fluid motion and to obey the 
Helmholtz theorems. This requires that across the wake, the pressure and the velocity 
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normal to the wake have zero jump. From the unsteady Bernoulli equation. we have 
that 

-1 
1 

1’ 
(2.18) 

where p is the pressure, p is the density, C, the pressure coefficient, and a is given by 
(2.2). Using similar arguments as those employed for the airfoil boundary condition, 
i.e., the small disturbance assumption, the mean surface approximation. and the 
subsequent splitting into steady and periodic unsteady components, we find that the 
wake boundary conditions may be imposed at y = 0, x > 1, and that 

c; = -2(d, + iw#). (2.19) 

Here, consistent with the linearization and periodicity assumptions, 

C, = -2s[G, + t,] = c[CSp + Cf:eio’l, 

where the steady part of the pressure coefftcient is given by 

Therefore, we require that for y = 0 and x > 1, 

A(4, + iw~) = 0 (2.20) 

A @,) = 0, (2.21) 

where A indicates the jump across the wake plane y = 0 of the argument, and where 
(2.21) enforces the condition that the normal velocity have zero jump across the 
wake. We note that 4 and its tangential derivative 4, are in general discontinuous 
across the wake. 

Another condition which is required is the Kutta condition of smooth flow or 
nonsingular pressure at sharp trailing edges. Again, we may view this as a condition 
which requires no pressure jump at a trailing edge so that (2.20) must hold uniformly 
as x approaches unity. 

In the transonic flows considered here, the proper jump conditions must be 
imposed across shock waves. However, these jump conditions affect the solution of 
the steady part of the potential function. The unsteady part satisfies a linear partial 
differential equation and in our formulation the effect of shock waves is felt only 

through the coefficients in the differential equation (2.10) which depend on @‘, 
which, in this work, is presumed known. (See Section III.) 

Finally, the potential function must satisfy certain conditions at infinity. Here it is 
simplest to work directly with (2.10). At large distances from the airfoil, i.e., 
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x2 + y* --t co, the steady flow approaches a uniform flow in the x direction. Then, for 
large distances from the origin, (2.10) becomes 

(2.22) 

which is simply a convected Helmholtz equation. Indeed, the tra.nsformations 

u= dg5$, <=.X/(1 -M2)“2, ?7=y/A4c’2, 

A = uM2/( 1 - A!P), and x = 4 expf-Ux), 

transform (2.22) into the Helmholtz equation 

(2.23) 

X16 +x,, + 0*x = 0. (2.24) 

The appropriate conditions at infinity for x which insure that all waves propagate 
away from their sources are the Sommerfeld radiation conditions. However, in the 
computations below, it will be necessary to impose the “condition at infinity” at a 
finite boundary. To improve the accuracy of the computation we choose to impose 
one of a family of boundary conditions (91 which better simulate, on a finite 
boundary, the condition that all waves must be outgoing waves. Specifically, we 
impose that 

x, + icq + x/zr = 0, 

at a “large” distance from the origin, where r’ = r2 + $. Transforming to the 
variables appearing in (2.10) yields that, sufficiently far away from the airfoil, 

where 

R = [x*/(1 - M2) f y2/MZ~]“2. 

We note that the accuracy of these boundary conditions improves as the frequency u 
increases f9]. A similar, though not identical, boundary condition is derived through 
the use of characteristics in [lo]. 

Recapitulating, we wish to approximate the solution of the partial differential 
equation (2.10) subject to the boundary conditions (2.17), (2.20), (2.21), and (2.25). 
For sharp trailing edges, we need also impose the Kutta condition. The function bi” 
appearing in (2.10) is presumed to be known. Of primary interest is the computation 
of the pressure on the airfoil. We will report on computations of the pressure coef- 
ficient (2.19) and, in particular, of the pressure jump across the airfoil 

AC; = C;(+) - CT;(-). (2.26) 
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III. LEAST SQUARES APPROXIMATIONS 

The governing partial differential equation (2.10) is linear; however. it is of the 
mixed type. In regions where the steady flow is subsonic, i.e., 

U${(l + @:)’ + (@;,)*) <a?. 

(2.10) is elliptic. If the inequality is reversed, then (2.10) is hyperbolic. In addition, if 
there is a shock in the steady flow, then the coefficient 

CF=K-(y+ l)@“, 

is discontinuous. However, for (2.10) to have a meaning it must be that 

(3.1) 

u=lK-(Yf l)@.il~, 

is continuous across any shock. 

(3.2) 

To approximate the solution of this flow problem it is convenient to use a scheme 
that is insensitive to equation type, i.e., one which is formally identical in the hyper- 
bolic and elliptic regions, and which also is insensitive, insofar as the properties of 
the resultant matrix system are concerned, to the size of w. For this reason we have 
chosen a finite element approximation based on a least squares variational principle 
which accomplishes both these goals. Standard finite difference discretizations of this 
problem, e.g., [4] and [5], require equation type differencing and have substantially 
different behavior as w varies. In addition, we shall develop a formulation which uses 
dependent variables that are continuous except across the wake and, in particular, are 
continuous across shocks. These are u defined by (3.2), 

u=&., (3.3) 

and the perturbation potential 4. To be precise, observe that (2.10) can be written as 

u, + u, + a#, + b# = 0, (3.4) 

where 

a = -2ico/E, b = w2/e. (3.5) 

Compatibility is provided by Eqs. (3.2) and (3.3) which we rewrite as 

cF~x-u=o, 4, - v = 0. 

The boundary conditions on the airfoil and on the outer boundary take the form 

where 

4, + Pv + v# = g, 

a = 0, P= 1, v = 0, g =A + W 
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on the airfoil, and 

a=x/R, P=y/R, 
1 1 

iuM/( 1 - M2), g=o 

on the outer boundary. Finally the wake conditions become 

4$, + iQ4> = 0, d(u) = 0. 

To approximate this problem we let R denote the flow region (with the airfoil and 
wake deleted), r denote the union of the outer boundary and the airfoil, with r,,, 
denoting the wake (see Fig. 1). We seek a triple 

which minimizes 

(3.6) 

for appropriate weights oi > 0 (i = 1, 2, 3). 
To discretize this problem we represent U, u as piecewise linear functions on the 

crisscross grid pattern shown in Fig. 2. It is known that this pattern will not exhibit 
instabilities that can occur with other types of least squares formulations [ 11 I. 
Moreover, we represent 4 as a piecewise linear function on the same grid. Observe 
that the pressure coefficient is given by (2.19) and hence the potential 4 is just as 
important as the velocity field; thus it is reasonable to use the same representation for 
these variables. 

FIG. 1. The computational flow region. 

58 l/5 l/3-3 
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FIG. 2. Grid for flat plate case. 

The analysis in Ill 1 indicates that the weights u2, o3 can be constant with respect 
to x and y and vary with the grid spacing h as l/h. The weight u, in the area integral 
in (3.6) is determined by the nature of the singularity at the leading edge of the airfoil 
(x = 0, y = 0). Assuming that this point is in a subsonic region, 4 will behave like 
r”‘, r being the distance from the tip of the airfoil. The analysis given in I12 1 
indicates that u, should vary like r and be independent of h. 

Each of the representations for U, u, 4 is discontinuous across the wake and airfoil. 
A double node system is introduced there which permits U, L’, and 4 to be discon- 
tinuous. The jump conditions are governed by the last integral in (3.6). 

Since in our formulation U, v, 4 are continuous across shocks, nothing special has 
to be done along these lines. This, in fact, was one of the primary motivations for the 
type of least squares scheme used. 

Expanding U, ~1, d as described, the minimization of (3.6) reduces to a set of 
algebraic equations 

AY=F. (3.7) 

The matrix A is Hermitian and positive definite. This property is retained even when 
there are supersonic regions in the flow field and at high frequencies, and this is a key 
to the equation type insensitive nature of the least squares scheme. 

IV. NUMERICAL RESULTS 

Two specific problems are reported here, the first of which is a pitching flat plate 
in a uniform flow. This was included because this problem admits an exact solution 
to which our numerical approximation can be compared. The second is a pitching 
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thin airfoil in a transonic flow with shocks. Also, in each of the cases reported, the 
sparse de~nitc system (3.7) was solved by a banded Gaussian elimination package. 

In the first case we consider a thin airfoil oscillating about its leading edge in a 
uniform flow so that 

The constant Mach number is 0.9. Thus the flow is everywhere subsonic. For such an 
elliptic problem an exact solution exists 181. In Fig. 3 we plot the real and imaginary 
parts of the pressure jump across the airfoil, and the lines in this figure represent the 
exact solution. 

The grid used for this calculation is shown in Fig. 2. For this grid the total number 
of degrees of freedom is 18.54. The computational box has dimensions of 4 x 2.5, and 
the airfoil is of unit length. The reduced frequency is 0.48 which is well into the 
indefinite range; i.e., standard finite difference approximations using relaxation to 
solve the algebraic system (3.7) will diverge since A in these cases is an indefinite 
matrix { 13 1, 

A couple of interesting points can be made about these calculations, First, the 
method is not subject to a frequency limitation. In fact, as o increases one does need 
more grid points per unit length for numerical resolution. However, this is compen- 
sated in part by the increased accuracy of the boundary condition on the outer boun- 

12 

0 

-12 I 0 1 
FIG. 3. Jump in unsteady component of the pressure coefficient for flat plate case. (0). real 

component; (0), imaginary component: (-). exact solution 15 1. 
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daries. This permits one to reduce the size of the computational region. Since the 
least squares formulation always produces positive definite matrices. the size of o 
does not affect the solution of the algebraic equations (3.7). This has been verified 
numerically in the specific case reported here as well as in other cases done by the 
authors. 

Our numerical results also verified the importance of the weight u, in (3.6). When 
this term is removed the behavior at the leading edge is drastically changed. In fact, it 
appears that the method diverges at this point even with mesh refinement when 
cr, = 1. On the other hand, with u, varying linearly with the distance to the leading 
edge, the singularity is nicely resolved as shown in Fig. 3. 

We now consider the case in which the steady flow @’ has both subsonic and 
supersonic regions. This causes Eq. (2.10) to be of mixed type as well. The steady 
flow potential ?Ds was computed using the small disturbance code TSFOIL [ 7 1. The 
values of @i were transferred to our finite element grid by interpolation. The steady 
state solution was computed for a parabolic-arc airfoil with thickness ratio equal to 
0.06, at a free stream Mach number of 0.872. 

Equation (2.10) was solved at reduced frequency LL) = 0.06 on the finite element 
grid shown in Fig. 4. This grid was composed of 42 points in the x and 27 points in 

FIG. 4. Grid for transonic case 



Figure 6 shows the computed value of the real and imaginary parts of u on the 
airfoil. We recall that this continuous variable is the product (3.2) of two flow quan- 
tities that are discontinuous at the shock. Observe that the computed approximation 
to u is smooth along the entire airfoil, both at the sonic line (X = 0.3) and at the 
shock (X = 0.75). From a physical point of view the most important flow variable is 
the pressure coefficient. This is given by 

c; = -2+/c,. + io(L4). (4.1) 

It is plotted in Fig. 7. The shock wave of the steady flow is located at approximately 
x = 0.75. It is important to stress that the coefficient C, , given by (3.1), is not zero at 
this point. Rather it changes discontinuously from negative to positive values as one 
moves from the supersonic to the subsonic region on the airfoil. This is somewhat 
obscured in Fig. 5 since some artificial viscosity was used in computing the steady 
potential @“. The net result is that the pressure coefficient (4.1) discontinuously 
“flips” at the shock. Apparently this particular simulation is the first to fully display 
this result in an unambiguous manner. 

5 
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the y direction, allowing 3534 degrees of freedom. The dimensions of this box are 
4 x 4, where the airfoil has unit length. The grid points are clustered around the point 
at which the steady state shock appeared, i.e., where the coefficient C, given by (3.2) 
in the time dependent equation is itself discontinuous. The value of this coefficient 
along the airfoil is shown in Fig. 5. 

-5 
0 1 

FIG. 5. The coeffkient C, = K - (y + 1) @:. 



400 COX, FIX. AND GUNZBURGER 

-.05 
0 1 

-.05 
0 1 

FIG. 6. (a) Real part of u = C,. . 4, for transonic case. (b) Imaginary part of u = C, . @, for tran- 
sonic case. 
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-705 
0 1 

-.05 
1 

FIG. 7. (a) Re@C~) for transonic case. (b) Im(dC~) for transonic ease. 
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There is a very slight ripple in Cz at the beginning of the supersonic region 
(x z 0.3). Thus is not due to instabilities in the numerical calculation since U, in fact, 
is quite smooth through this region as can be observed from Fig. 6. Rather this effect 
arises from the computation of u/C, in this region where both u and C, become 
small. 

V. CONCLUDING REMARKS 

We have shown that a finite element scheme with a weighted least squares 
variational principle is applicable to the problem of transonic flow around a 
harmonically oscillating airfoil. For the flat plat case, numerical results compare 
favorably with the exact solution. In the transonic problem, where an exact solution 
is not known, our numerical results have the characteristics of known experimental 
results. The performance of this numerical method has been demonstrated to be 
independent of equation type (elliptic or hyperbolic) and frequency. The weighted 
least squares principle allows the appropriate modeling of singularities whereas the 
normal least squares would not. 

Finally, we must note that the immediate goal of this research was to test the 
discretization scheme. For that reason we did not optimize with respect to the 
solution method, but instead used a direct solver. The next step in this research will 
be to take advantage of an important feature of a least squares approach, namely, the 
positive definiteness of the coefficient matrix, a property which permits the use of a 
wide range of iterative solvers. Once an iterative technique is incorporated with our 
discretization scheme, we will apply it Iirst to some two-dimensional airfoils with 
thickness, then to the problem in three dimensions. 
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